В прямоугольном треугольнике катеты относятся как 8:15. Найдите площадь этого треугольника, если площадь круга описанного около него равна 289π см²

Прямоугольный ΔАВС - катеты АВ:АС=8:15, откуда АС=15АВ/8.
Площадь описанной окружности  Sок=289π.
Центр описанной окружности совпадает с серединой гипотенузы, значит радиус R=ВС/2.
Т.к. 
Sок=πR²
289π=π*BC²/4
ВС²=1156
По т.Пифагора: АВ²+АС²=ВС²
АВ²+(15АВ/8)²=1156
289АВ²/64=1156
АВ²=256
АВ=16
АС=15*16/8=30
Площадь треугольника  Sавс=АВ*АС/2=16*30/2=240

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку