Дана незамкнутая ломаная abcd, причем ab=cd и угол abc = углу bcd. Доказать, что ad параллельна bc.

Пусть AC и BD пересекаются в точке O. Треугольники ABC и DCB равны по двум сторонам и углу между ними, поэтому ∠BAC = ∠BDC, а так как∠AOB = ∠DOC, то ∠ABO = ∠DCO. Значит, равны треугольники AOB и DOC (по стороне и двум прилежащим к ней углам), поэтому AO = DO и BO = CO. Углы при общей вершине O равнобедренных треугольников AOD и BOC равны, поэтому равны и углы при их основаниях: ∠ACB = ∠CAD. Следовательно, AD || BC.

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку
×