
радиус основания конуса 5, а высота 12. плоскость сечения проходит через вершину конуса и хорду основания, длина которой 6. найдите расстояние от центра основания до плоскости сечения

Есть конус. т.О - центр основания, Д - вершина, АВ - хорда.
Рассмотрим равнобедренный треугольник АВО: АО=ВО=r=5, АВ=6. Из т.О опустим перпендикуляр ОС к стороне АВ:
ОС^2=AO^2-AC^2=5^2-(6/2)^2=25-9=16, ОС=4.
Рассмотрим прямоугольный треугольник СДО:
СД^2=OC^2+ОД^2=4^2+12^2=16+144=160, СД=4*корень из 10
Из т.О проведем перпендикуляр ОЕ к стороне СД. Треугольники СДО и ЕДО подобны (угол Д общий, угол СОД=ОЕД=90). Тогда:
СД:ОД=ОС:ОЕ;
ОЕ=ОД*ОС/СД=12*4/(4*корень из 10)=12/корень из 10
Оцени ответ