Фигура ограничена линиями f(x)= - x^{2} + 6x-5 и g(x)= 5-x, и у=0
Найти площадь фигуры

Найдем пределы интегрирования
-x²+6x-5=5-x
x²-7x+10=0
x1+x2=7 U x1*x2=10⇒x1=2 U x2=5
Фигура ограничена сверху графиком параболы,а снизу прямой
S= /int/limits^5_2 {(-x^2+7x-10)} /, dx =-x^3/3+7x^2/2-10x|(5-2)=-125/3+175/2-50+8/3-14+20=325/6-74+20 2/3=76 5/6-74=2 5/6

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку
×